Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The embedded contact homology (ECH) capacities are a sequence of numerical invariants of symplectic four-manifolds that give (sometimes sharp) obstructions to symplectic embeddings. These capacities are defined using embedded contact homology, and establishing their basic properties currently requires Seiberg–Witten theory. In this paper we define a sequence of symplectic capacities in four dimensions using only basic notions of holomorphic curves. The capacities satisfy the same basic properties as ECH capacities and agree with the ECH capacities for the main examples for which the latter have been computed, namely convex and concave toric domains. The capacities are also useful for obstructing symplectic embeddings into closed symplectic four-manifolds. This work is inspired by a recent preprint of McDuff and Siegel [D. McDuff, K. Siegel, arXiv [Preprint] (2021)], giving a similar elementary alternative to symplectic capacities from rational symplectic field theory (SFT).more » « less
-
It is known that every contact form on a closed three-manifold has at least two simple Reeb orbits, and a generic contact form has infinitely many. We show that if there are exactly two simple Reeb orbits, then the contact form is nondegenerate. Combined with a previous result, this implies that the three-manifold is diffeomorphic to the three-sphere or a lens space, and the two simple Reeb orbits are the core circles of a genus-one Heegaard splitting. We also obtain further information about the Reeb dynamics and the contact structure. For example, the Reeb flow has a disk-like global surface of section and so its dynamics are described by a pseudorotation, the contact structure is universally tight, and in the case of the three-sphere the contact volume and the periods and rotation numbers of the simple Reeb orbits satisfy the same relations as for an irrational ellipsoid.more » « less
-
null (Ed.)We study the combinatorial Reeb flow on the boundary of a four-dimensional convex polytope. We establish a correspondence between "combinatorial Reeb orbits" for a polytope, and ordinary Reeb orbits for a smoothing of the polytope, respecting action and Conley-Zehnder index. One can then use a computer to find all combinatorial Reeb orbits up to a given action and Conley-Zehnder index. We present some results of experiments testing Viterbo's conjecture and related conjectures. In particular, we have found some new examples of polytopes with systolic ratio \begin{document}$ 1 $$\end{document}$.more » « less
An official website of the United States government
